Code
using AlgebraOfGraphics
using CairoMakie
using DataFrames
using MixedModels
using MixedModelsMakie
using Random
using SMLP2024: dataset
using AlgebraOfGraphics: AlgebraOfGraphics as AoG
const progress=false
Phillip Alday, Douglas Bates, and Reinhold Kliegl
2024-09-11
The speed of MixedModels.jl relative to its predecessors makes the parametric bootstrap much more computationally tractable. This is valuable because the parametric bootstrap can be used to produce more accurate confidence intervals than methods based on standard errors or profiling of the likelihood surface.
This page is adapted from the MixedModels.jl docs
Bootstrapping is a family of procedures for generating sample values of a statistic, allowing for visualization of the distribution of the statistic or for inference from this sample of values. Bootstrapping also belongs to a larger family of procedures called resampling, which are based on creating new samples of data from an existing one, then computing statistics on the new samples, in order to examine the distribution of the relevant statistics.
A parametric bootstrap is used with a parametric model, m
, that has been fit to data. The procedure is to simulate n
response vectors from m
using the estimated parameter values and refit m
to these responses in turn, accumulating the statistics of interest at each iteration.
The parameters of a LinearMixedModel
object are the fixed-effects parameters (β
), the standard deviation (σ
), of the per-observation noise, and the covariance parameter (θ
), that defines the variance-covariance matrices of the random effects. A technical description of the covariance parameter can be found in the MixedModels.jl docs. Lisa Schwetlick and Daniel Backhaus have provided a more beginner-friendly description of the covariance parameter in the documentation for MixedModelsSim.jl. For today’s purposes – looking at the uncertainty in the estimates from a fitted model – we can simply use values from the fitted model, but we will revisit the parametric bootstrap as a convenient way to simulate new data, potentially with different parameter values, for power analysis.
Attach the packages to be used
Note that the precise stream of random numbers generated for a given seed can change between Julia versions. For exact reproducibility, you either need to have the exact same Julia version or use the StableRNGs package.
The kb07
data (Kronmüller & Barr, 2007) are one of the datasets provided by the MixedModels
package.
Arrow.Table with 1789 rows, 7 columns, and schema:
:subj String
:item String
:spkr String
:prec String
:load String
:rt_trunc Int16
:rt_raw Int16
Convert the table to a DataFrame for summary.
Row | variable | mean | min | median | max | nmissing | eltype |
---|---|---|---|---|---|---|---|
Symbol | Union… | Any | Union… | Any | Int64 | DataType | |
1 | subj | S030 | S103 | 0 | String | ||
2 | item | I01 | I32 | 0 | String | ||
3 | spkr | new | old | 0 | String | ||
4 | prec | break | maintain | 0 | String | ||
5 | load | no | yes | 0 | String | ||
6 | rt_trunc | 2182.2 | 579 | 1940.0 | 5171 | 0 | Int16 |
7 | rt_raw | 2226.24 | 579 | 1940.0 | 15923 | 0 | Int16 |
The experimental factors; spkr
, prec
, and load
, are two-level factors.
The EffectsCoding
contrast is used with these to create a ±1 encoding.
We can look at an initial fit of moderate complexity:
form = @formula(rt_trunc ~ 1 + spkr * prec * load +
(1 + spkr + prec + load | subj) +
(1 + spkr + prec + load | item))
m0 = fit(MixedModel, form, kb07; contrasts, progress)
Est. | SE | z | p | σ_subj | σ_item | |
(Intercept) | 2181.6729 | 77.3131 | 28.22 | <1e-99 | 301.6736 | 362.3182 |
spkr: old | 67.7490 | 18.2747 | 3.71 | 0.0002 | 42.5441 | 40.7073 |
prec: maintain | -333.9206 | 47.1388 | -7.08 | <1e-11 | 61.9978 | 246.8078 |
load: yes | 78.7702 | 19.5387 | 4.03 | <1e-04 | 64.9874 | 42.5139 |
spkr: old & prec: maintain | -21.9655 | 15.8070 | -1.39 | 0.1646 | ||
spkr: old & load: yes | 18.3838 | 15.8070 | 1.16 | 0.2448 | ||
prec: maintain & load: yes | 4.5333 | 15.8070 | 0.29 | 0.7743 | ||
spkr: old & prec: maintain & load: yes | 23.6072 | 15.8070 | 1.49 | 0.1353 | ||
Residual | 668.5371 |
The default display in Quarto uses the pretty MIME show method for the model and omits the estimated correlations of the random effects.
The VarCorr
extractor displays these.
Column | Variance | Std.Dev | Corr. | |||
subj | (Intercept) | 91006.9887 | 301.6736 | |||
spkr: old | 1810.0012 | 42.5441 | +0.79 | |||
prec: maintain | 3843.7268 | 61.9978 | -0.59 | +0.02 | ||
load: yes | 4223.3647 | 64.9874 | +0.36 | +0.85 | +0.54 | |
item | (Intercept) | 131274.4558 | 362.3182 | |||
spkr: old | 1657.0830 | 40.7073 | +0.44 | |||
prec: maintain | 60914.1141 | 246.8078 | -0.69 | +0.35 | ||
load: yes | 1807.4303 | 42.5139 | +0.32 | +0.15 | -0.14 | |
Residual | 446941.7901 | 668.5371 |
None of the two-factor or three-factor interaction terms in the fixed-effects are significant. In the random-effects terms only the scalar random effects and the prec
random effect for item
appear to be warranted, leading to the reduced formula
# formula f4 from https://doi.org/10.33016/nextjournal.100002
form = @formula(rt_trunc ~ 1 + spkr * prec * load + (1 | subj) + (1 + prec | item))
m1 = fit(MixedModel, form, kb07; contrasts, progress)
Est. | SE | z | p | σ_item | σ_subj | |
(Intercept) | 2181.7582 | 77.4709 | 28.16 | <1e-99 | 364.7286 | 298.1109 |
spkr: old | 67.8114 | 16.0526 | 4.22 | <1e-04 | ||
prec: maintain | -333.8582 | 47.4629 | -7.03 | <1e-11 | 252.6687 | |
load: yes | 78.6849 | 16.0525 | 4.90 | <1e-06 | ||
spkr: old & prec: maintain | -21.8802 | 16.0525 | -1.36 | 0.1729 | ||
spkr: old & load: yes | 18.3214 | 16.0526 | 1.14 | 0.2537 | ||
prec: maintain & load: yes | 4.4710 | 16.0526 | 0.28 | 0.7806 | ||
spkr: old & prec: maintain & load: yes | 23.5219 | 16.0525 | 1.47 | 0.1428 | ||
Residual | 678.9318 |
Column | Variance | Std.Dev | Corr. | |
item | (Intercept) | 133026.918 | 364.729 | |
prec: maintain | 63841.496 | 252.669 | -0.70 | |
subj | (Intercept) | 88870.080 | 298.111 | |
Residual | 460948.432 | 678.932 |
These two models are nested and can be compared with a likelihood-ratio test.
model-dof | deviance | χ² | χ²-dof | P(>χ²) | |
rt_trunc ~ 1 + spkr + prec + load + spkr & prec + spkr & load + prec & load + spkr & prec & load + (1 | subj) + (1 + prec | item) | 13 | 28658 | |||
rt_trunc ~ 1 + spkr + prec + load + spkr & prec + spkr & load + prec & load + spkr & prec & load + (1 + spkr + prec + load | subj) + (1 + spkr + prec + load | item) | 29 | 28637 | 21 | 16 | 0.1650 |
The p-value of approximately 20% leads us to prefer the simpler model, m1
, to the more complex, m0
.
To bootstrap the model parameters, first initialize a random number generator then create a bootstrap sample and extract the table of parameter estimates from it.
Table with 18 columns and 5000 rows:
obj β1 β2 β3 β4 β5 β6 ⋯
┌────────────────────────────────────────────────────────────────────
1 │ 28691.9 2049.88 71.6398 -268.333 75.1566 -17.8459 -1.90968 ⋯
2 │ 28642.6 2197.6 73.0832 -313.409 68.018 -18.062 30.2431 ⋯
3 │ 28748.1 2175.11 85.4784 -311.786 48.8342 -27.3483 4.97874 ⋯
4 │ 28683.7 2158.48 86.0498 -301.013 71.0117 -45.3329 27.3747 ⋯
5 │ 28692.6 2342.6 81.9722 -305.764 78.9518 -37.0137 -5.59876 ⋯
6 │ 28691.5 2198.64 90.4229 -387.855 93.4767 -37.2244 3.13351 ⋯
7 │ 28687.7 2239.49 74.5619 -364.151 93.9154 -43.441 19.1572 ⋯
8 │ 28673.4 2217.89 76.4077 -409.228 52.5047 -11.5777 26.4348 ⋯
9 │ 28688.6 2184.89 81.3252 -298.693 89.8482 -5.99902 21.3162 ⋯
10 │ 28597.6 2227.36 57.3436 -332.635 102.565 -3.85194 7.23222 ⋯
11 │ 28700.8 2131.61 58.1253 -363.018 88.0576 -24.1592 2.26268 ⋯
12 │ 28644.8 2145.05 94.7216 -242.292 103.158 -27.2788 27.0664 ⋯
13 │ 28678.8 2113.56 55.4491 -382.425 89.8252 -12.9669 -2.74384 ⋯
14 │ 28773.5 2123.38 117.383 -258.883 78.8998 -63.4576 26.0778 ⋯
15 │ 28566.3 2168.89 52.8287 -289.968 71.5994 -14.7045 23.0165 ⋯
16 │ 28764.1 2344.66 54.5199 -356.183 54.3082 -36.4798 32.3478 ⋯
17 │ 28547.7 2230.3 56.2337 -329.448 88.8918 -27.7721 23.5031 ⋯
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
An empirical density plot of the estimates of the residual standard deviation is obtained as
plt = data(tbl) * mapping(:σ) * AoG.density()
draw(plt; axis=(;title="Parametric bootstrap estimates of σ"))
A density plot of the estimates of the standard deviation of the random effects is obtained as
plt = data(tbl) * mapping(
[:σ1, :σ2, :σ3] .=> "Bootstrap replicates of standard deviations";
color=dims(1) => renamer(["Item intercept", "Item speaker", "Subj"])
) * AoG.density()
draw(plt; figure=(;supertitle="Parametric bootstrap estimates of variance components"))
The bootstrap sample can be used to generate intervals that cover a certain percentage of the bootstrapped values. We refer to these as “coverage intervals”, similar to a confidence interval. The shortest such intervals, obtained with the confint
extractor, correspond to a highest posterior density interval in Bayesian inference.
We generate these for all random and fixed effects:
DictTable with 2 columns and 13 rows:
par lower upper
────┬─────────────────────
β1 │ 2032.48 2340.42
β2 │ 34.3982 97.8079
β3 │ -428.09 -244.474
β4 │ 48.642 110.179
β5 │ -53.4336 8.42791
β6 │ -11.3574 51.5299
β7 │ -27.1799 36.3332
β8 │ -9.28905 53.5917
ρ1 │ -0.912778 -0.471128
σ │ 654.965 700.928
σ1 │ 265.276 456.967
σ2 │ 179.402 321.016
σ3 │ 232.096 359.744
draw(
data(samp.β) * mapping(:β; color=:coefname) * AoG.density();
figure=(; resolution=(800, 450)),
)
┌ Warning: Found `resolution` in the theme when creating a `Scene`. The `resolution` keyword for `Scene`s and `Figure`s has been deprecated. Use `Figure(; size = ...` or `Scene(; size = ...)` instead, which better reflects that this is a unitless size and not a pixel resolution. The key could also come from `set_theme!` calls or related theming functions.
└ @ Makie ~/.julia/packages/Makie/WgbrE/src/scenes.jl:227
For the fixed effects, MixedModelsMakie provides a convenience interface to plot the combined coverage intervals and density plots
Often the intercept will be on a different scale and potentially less interesting, so we can stop it from being included in the plot:
Let’s consider the classic dysetuff dataset:
Est. | SE | z | p | σ_batch | |
(Intercept) | 1527.5000 | 17.6946 | 86.33 | <1e-99 | 37.2603 |
Residual | 49.5101 |
┌ Warning: NLopt was roundoff limited
└ @ MixedModels ~/.julia/packages/MixedModels/9scMO/src/optsummary.jl:160
┌ Warning: NLopt was roundoff limited
└ @ MixedModels ~/.julia/packages/MixedModels/9scMO/src/optsummary.jl:160
┌ Warning: NLopt was roundoff limited
└ @ MixedModels ~/.julia/packages/MixedModels/9scMO/src/optsummary.jl:160
┌ Warning: NLopt was roundoff limited
└ @ MixedModels ~/.julia/packages/MixedModels/9scMO/src/optsummary.jl:160
┌ Warning: NLopt was roundoff limited
└ @ MixedModels ~/.julia/packages/MixedModels/9scMO/src/optsummary.jl:160
Table with 5 columns and 10000 rows:
obj β1 σ σ1 θ1
┌────────────────────────────────────────────────
1 │ 339.022 1509.13 67.4315 14.312 0.212245
2 │ 322.689 1538.08 47.9831 25.5673 0.53284
3 │ 324.002 1508.02 50.1346 21.7622 0.434076
4 │ 331.887 1538.47 53.2238 41.0559 0.771383
5 │ 317.771 1520.62 45.2975 19.1802 0.423428
6 │ 315.181 1536.94 36.7556 49.1832 1.33812
7 │ 333.641 1519.88 53.8161 46.712 0.867993
8 │ 325.729 1528.43 47.8989 37.6367 0.785752
9 │ 311.601 1497.46 41.4 15.1257 0.365355
10 │ 335.244 1532.65 64.616 0.0 0.0
11 │ 327.935 1552.54 57.2036 0.485275 0.00848329
12 │ 323.861 1519.28 49.355 24.3703 0.493776
13 │ 332.736 1509.04 59.6272 18.2905 0.306747
14 │ 328.243 1531.7 51.5431 32.4743 0.630042
15 │ 336.186 1536.17 64.0205 15.243 0.238096
16 │ 329.468 1526.42 58.6856 0.0 0.0
17 │ 320.086 1517.67 43.218 35.9663 0.832207
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮
plt = data(tbldye) * mapping(:σ1) * AoG.density()
draw(plt; axis=(;title="Parametric bootstrap estimates of σ_batch"))
Notice that this density plot has a spike, or mode, at zero. Although this mode appears to be diffuse, this is an artifact of the way that density plots are created. In fact, it is a pulse, as can be seen from a histogram.
plt = data(tbldye) * mapping(:σ1) * AoG.histogram(;bins=100)
draw(plt; axis=(;title="Parametric bootstrap estimates of σ_batch"))
A value of zero for the standard deviation of the random effects is an example of a singular covariance. It is easy to detect the singularity in the case of a scalar random-effects term. However, it is not as straightforward to detect singularity in vector-valued random-effects terms.
For example, if we bootstrap a model fit to the sleepstudy
data
sleepstudy = dataset(:sleepstudy)
msleep = fit(MixedModel, @formula(reaction ~ 1 + days + (1 + days | subj)),
sleepstudy)
Est. | SE | z | p | σ_subj | |
(Intercept) | 251.4051 | 6.6323 | 37.91 | <1e-99 | 23.7805 |
days | 10.4673 | 1.5022 | 6.97 | <1e-11 | 5.7168 |
Residual | 25.5918 |
Table with 10 columns and 10000 rows:
obj β1 β2 σ σ1 σ2 ρ1 ⋯
┌────────────────────────────────────────────────────────────────────
1 │ 1721.95 252.488 11.0328 22.4544 29.6185 6.33343 0.233383 ⋯
2 │ 1760.85 260.763 8.55352 27.3833 20.8066 4.32936 0.91467 ⋯
3 │ 1750.88 246.709 12.4613 25.9951 15.8702 6.33404 0.200358 ⋯
4 │ 1777.33 247.683 12.9824 27.7966 27.5413 4.9878 0.121411 ⋯
5 │ 1738.05 245.649 10.5792 25.3596 21.5208 4.26131 0.0526768 ⋯
6 │ 1751.25 255.669 10.1984 26.1432 22.5389 4.58209 0.225968 ⋯
7 │ 1727.51 248.986 7.62095 24.6451 19.0858 4.34881 0.212916 ⋯
8 │ 1754.18 246.075 11.0469 26.9407 19.8341 4.55961 -0.202146 ⋯
9 │ 1757.47 245.407 13.7475 25.8265 20.0014 7.7647 -0.266385 ⋯
10 │ 1752.8 253.911 11.4977 25.7077 20.6409 6.27298 0.171494 ⋯
11 │ 1707.8 248.887 10.1608 23.9684 10.5922 4.32039 1.0 ⋯
12 │ 1773.69 252.542 10.7379 26.8794 27.7966 6.20556 0.156463 ⋯
13 │ 1761.27 254.712 11.0373 25.7998 23.2005 7.30831 0.368175 ⋯
14 │ 1737.0 260.299 10.5659 24.6504 29.0113 4.26877 -0.0785722 ⋯
15 │ 1760.12 258.949 10.1464 27.2088 8.02888 7.01928 0.727229 ⋯
16 │ 1723.7 249.204 11.7868 24.9861 18.6887 3.08433 0.633218 ⋯
17 │ 1734.14 262.586 8.96611 24.0011 26.7969 5.37598 0.29709 ⋯
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
the singularity can be exhibited as a standard deviation of zero or as a correlation of ±1.
DictTable with 2 columns and 6 rows:
par lower upper
────┬───────────────────
β1 │ 237.905 264.231
β2 │ 7.44545 13.3516
ρ1 │ -0.409926 1.0
σ │ 22.6345 28.5125
σ1 │ 10.6764 33.3567
σ2 │ 3.07053 7.82205
A histogram of the estimated correlations from the bootstrap sample has a spike at +1
.
plt = data(tblsleep) * mapping(:ρ1) * AoG.histogram(;bins=100)
draw(plt; axis=(;title="Parametric bootstrap samples of correlation of random effects"))
or, as a count,
Close examination of the histogram shows a few values of -1
.
Furthermore there are even a few cases where the estimate of the standard deviation of the random effect for the intercept is zero.
There is a general condition to check for singularity of an estimated covariance matrix or matrices in a bootstrap sample. The parameter optimized in the estimation is θ
, the relative covariance parameter. Some of the elements of this parameter vector must be non-negative and, when one of these components is approximately zero, one of the covariance matrices will be singular.
The issingular
method for a MixedModel
object that tests if a parameter vector θ
corresponds to a boundary or singular fit.
This operation is encapsulated in a method for the issingular
function that works on MixedModelBootstrap
objects.