RePsychLing Masson, Rabe, & Kliegl, 2017) with Julia: Specification and selection

Author

Phillip Alday, Douglas Bates, and Reinhold Kliegl

Published

2024-09-09

1 Setup

Packages we (might) use.

using DataFrames
using MixedModels
using MixedModelsMakie
using SMLP2024: dataset
using Statistics: mean, std

const progress=false
false
dat = DataFrame(dataset(:mrk17_exp1))
describe(dat)
9×7 DataFrame
Row variable mean min median max nmissing eltype
Symbol Union… Any Union… Any Int64 DataType
1 subj S01 S73 0 String
2 item ACHE YEAR 0 String
3 trial 239.958 2 239.0 480 0 Int16
4 F HF LF 0 String
5 P rel unr 0 String
6 Q clr deg 0 String
7 lQ clr deg 0 String
8 lT NW WD 0 String
9 rt 647.173 301 601.0 2994 0 Int16

2 Specification

This section covers the general terminology and advice for model specification.

2.1 Response, covariates, and factors

Linear mixed models (LMMs), like many other types of statistical models, describe a relationship between a response variable and covariates that have been measured or observed along with the response. The statistical model assumes that the residuals of the fitted response (i.e., not the responses) are normally – also identically and independently – distributed. This is the first assumption of normality in the LMM. It is standard practice that model residuals are inspected and, if serious skew is indicated, that the response is Box-Cox transformed (unless not justified for theoretical reasons) to fulfill this model assumption.

In the following we distinguish between categorical covariates and numerical covariates. Categorical covariates are factors. The important characteristic of a factor is that, for each observed value of the response, the factor takes on the value of one of a set of discrete levels. The levels can be unordered (nominal) or ordered (ordinal). We use the term covariate when we refer to numerical covariates, that is to continuous measures with some distribution. In principle, statistical models are not constrained by the distribution of observations across levels of factors and covariates, but the distribution may lead to problems of model identification and it does implications for statistical power.

Statistical power, especially for the detection of interactions, is best when observations are uniformly distributed across levels of factors or uniform across the values of covariates. In experimental designs, uniform distributions may be achieved by balanced assignment of subjects (or other carriers of responses) to the levels of factors or combinations of factor levels. In observational contexts, we achieve uniform distributions by stratification (e..g., on age, gender, or IQ scores). Statistical power is worse for skewed than normal distributions (I think …). Therefore, although it is not required to meet an assumption of the statistical model, it may be useful to consider Box-Cox transformations of covariates.

2.2 Nested and crossed random (grouping) factors

In LMMs the levels of at least one of the factors represents units in the data set that are assumed to be sampled, ideally randomly, from a population that is normally distributed with respect to the response. This is the second assumption of normal distribution in LMMs. In psychology and linguistics the observational units are often the subjects or items (e..g., texts, sentences, words, pictures) in the study. We may use numbers, such as subject identifiers, to designate the particular levels that we observed; we recommend to prepend these numbers with “S” or “I” to avoid confusion with numeric variables.

Random sampling is the basis of generalization from the sample to the population. The core statistics we will estimate in this context are variances and correlations of grand means and (quasi-)experimental effects. These terms will be explained below. What we want to stress here is that the estimation of (co-)variances / correlations requires a larger number of units (levels) than the estimation of means. Therefore, from a practical perspective, it is important that random factors are represented with many units.

When there is more than one random factor, we must be clear about their relation. The two prototypical cases are that the factors are nested or crossed. In multilevel models, a special case of mixed models, the levels of the random factors are strictly nested. For example, at a given time, every student attends a specific class in a specific school. Students, classes, and schools could be three random factors. As soon as we look at this scenario across several school years, the nesting quickly falls apart because students may move between classes and between schools.

In psychology and linguistics, random factors are often crossed, for example, when every subject reads every word in every sentence in a word-by-word self-paced reading experiment (or alternatively: when every word in every sentence elicits a response from every subject). However, in an eye-movement experiment (for example), the perfect crossing on a measure like fixation duration is not attainable because of blinks or skipping of words.

In summary, the typical situation in experimental and observational studies with more than one random factor is partial crossing or partial nesting of levels of the random factors. Linear mixed models handle these situations very well.

2.3 Experimental and quasi-experimental fixed factors / covariates

Fixed experimental factor or covariate. In experiments the units (or levels) of the random factor(s) are assigned to manipulations implemented in their design. The researcher controls the assignment of units of the random factor(s) (e.g., subjects, items) to experimental manipulations. These manipulations are represented as factors with a fixed and discrete set of levels (e.g., training vs. control group) or as covariates associated with continuous numeric values (e.g., presentation times).

Fixed quasi-experimental factor or covariate. In observational studies (which can also be experiments) the units (or levels) of random factors may “bring along” characteristics that represent the levels of quasi-experimental factors or covariates beyond the control of the researcher. Whether a a subject is female, male, or diverse or whether a word is a noun, a verb, or an adjective are examples of quasi-experimental factors of gender or word type, respectively. Subject-related covariates are body height, body mass, and IQ scores; word-related covariates are their lengths, frequency, and cloze predictability.

2.4 Between-unit and within-unit factors / covariates

The distinction between between-unit and within-unit factors is always relative to a random (grouping) factor of an experimental design. A between-unit factor / covariate is a factor for which every unit of the random factor is assigned to or characterized by only one level of the factor. A within-unit factor is a factor for which units of the random factor appear at every level of the factor.

For the typical random factor, say Subject, there is little ambiguity because we are used to the between-within distinction from ANOVAs, more specifically the F1-ANOVA. In psycholinguistics, there is the tradition to test effects also for the second random factor Item in an F2-ANOVA. Importantly, for a given fixed factor all four combinations are possible. For example, Gender is a fixed quasi-experimental between-subject / within-item factor; word frequency is a fixed quasi-experimental within-subject / between-item covariate; Prime-target relation is a fixed experimental within-subject / within-item factor (assuming that targets are presented both in a primed and in an unprimed situation); and when a training manipulation is defined by the items used in the training, then in a training-control group design, the fixed factor Group is a fixed experimental between-subject / between-item factor.

These distinctions are critical for setting up LMMs because variance components for (quasi-)experimental effects can only be specified for within-unit effects. Note also that loss of data (within limits), counterbalancing or blocking of items are irrelevant for these definitions.

2.6 Contrast- and trend-based fixed-effect model parameters

Fixed factors and covariates are expected to have effects on the response. Fixed-effect model parameters estimate the hypothesized main and interaction effects of the study. The estimates of factors are based on contrasts; the estimates of covariates are based on trends. Conceptually, they correspond to unstandardized regression coefficients in multiple regression.

The intercept is a special regression coefficient; it estimates the value of the dependent variable when all fixed effects associated with factors and trends associated with covariates are zero. In experimental designs with higher-order interactions there is an advantage of specifying the LMM in such a way that the intercept estimates the grand mean (GM; mean of the means of design cells). This happens if (a) contrasts for factors are chosen such that the intercept estimates the GM (positive: EffectsCoding, SeqDifferenceCoding, or HelmertCoding contrasts; negative: DummyCoding), (b) orthogonal polynomial trends are used (Helmert, anova-based), and (c) covariates are centered on their mean before inclusion in the model. As always, there may be good theoretical reasons to depart from the default recommendation.

The specification of contrasts / trends does not depend on the status of the fixed factor / covariate. It does not matter whether a factor varies between or within the units of a random factor or whether it is an experimental or quasi-experimental factor. Contrasts are not specified for random (grouping) factors.

2.7 Variance components (VCs) and correlation parameters (CPs)

Variance components (VCs) and correlation parameters (CPs) are within-group model parameters; they correspond to (some of the) within-unit (quasi-)experimental fixed-effect model parameters. Thus, we may be able to estimate a subject-related VC for word frequency. If we included a linear trend for word frequency, the VC estimates the subject-related variance in these slopes. We cannot estimate an item-related VC for the word-frequency slopes because there is only one frequency associated with words. Analogously, we may able to estimate an item-related VC for the effect of Group (training vs. control), but we cannot estimate a subject-related VC for this effect.

The within-between characteristics of fixed factors and covariates relative to the random factor(s) are features of the design of the experiment or observational study. They fundamentally constrain the specification of the LMM. That’s why it is of upmost importance to be absolutely clear about their status.

2.8 Conditional modes of random effects

In this outline of the dimensions underlying the specification of an LMM, we have said nothing so far about the conditional modes of random effects (i.e., the results shown in caterpillar and shrinkage plots). They are not needed for model specification or model selection.

The VC is the prior variance of the random effects, whereas var(ranef(model)) is the variance of the posterior means/modes of the random effects. See Kliegl et al. (2010, VisualCognition); Rizopoulos (2019, stackexchange.

3 Background for data

3.1 Abstract

This semantic-priming experiment was reported in Masson, Rabe, & Kliegl (2017, Exp. 1, Memory & Cognition). It is a direct replication of an experiment reported in Masson & Kliegl (2013, Exp. 1, JEPLMC). Following a prime word a related or unrelated high- or low-frequency target word or a nonword was presented in clear or dim font. The subject’s task was to decide as quickly as possible whether the target was a word or a nonword, that is subjects performed a lexical decision task (LDT). The reaction time and the accuracy of the response were recorded. Only correct reaction times to words are included. After filtering there were 16,409 observations recorded from 73 subjects and 240 items.

3.2 Codebook

The data (variables and observations) used by Masson et al. (2017) are available in file MRK17_Exp1.RDS

Variable Description
Subj Subject identifier
Item Target (non-)word
trial Trial number
F Target frequency is high or low
P Prime is related or unrelated to target
Q Target quality is clear or degraded
lQ Last-trial target quality is clear or degraded
lT Last-trail target requires word or nonword response
rt Reaction time [ms]

lagQlty and lagTrgt refer to experimental conditions in the last trial.

Corresponding indicator variables (-1/+1):

cells = combine(
  groupby(dat, [:F, :P, :Q, :lQ, :lT]),
  nrow => :n,
  :rt => mean => :rt_m,
  :rt => std => :rt_sd
)
cells
32×8 DataFrame
7 rows omitted
Row F P Q lQ lT n rt_m rt_sd
String String String String String Int64 Float64 Float64
1 LF unr deg deg NW 491 683.831 197.074
2 LF unr deg deg WD 488 676.848 198.409
3 LF unr deg clr NW 499 685.265 186.73
4 LF unr deg clr WD 519 676.711 167.794
5 LF unr clr deg NW 528 658.225 213.144
6 LF unr clr deg WD 494 653.03 196.71
7 LF unr clr clr NW 506 648.057 209.625
8 LF unr clr clr WD 499 641.669 183.413
9 LF rel deg deg NW 492 667.872 175.869
10 LF rel deg deg WD 498 653.43 180.58
11 LF rel deg clr NW 539 650.16 167.51
12 LF rel deg clr WD 512 678.119 217.209
13 LF rel clr deg NW 499 635.076 192.738
21 HF unr clr deg NW 553 644.6 203.261
22 HF unr clr deg WD 495 633.046 172.604
23 HF unr clr clr NW 495 619.626 176.55
24 HF unr clr clr WD 532 620.838 192.689
25 HF rel deg deg NW 508 659.266 192.637
26 HF rel deg deg WD 546 637.793 177.496
27 HF rel deg clr NW 507 645.493 179.962
28 HF rel deg clr WD 517 667.685 231.145
29 HF rel clr deg NW 527 615.647 176.826
30 HF rel clr deg WD 504 620.569 173.764
31 HF rel clr clr NW 546 635.319 205.19
32 HF rel clr clr WD 499 613.094 192.13

4 Complex LMM

The following LMM is not the maximal factorial LMM because we do not include interaction terms and associated correlation parameters in the RE structure.

4.1 Model fit

contrasts =
    Dict( :F => EffectsCoding(; levels=["LF", "HF"]) ,
          :P => EffectsCoding(; levels=["unr", "rel"]),
          :Q => EffectsCoding(; levels=["deg", "clr"]),
          :lQ =>EffectsCoding(; levels=["deg", "clr"]),
          :lT =>EffectsCoding(; levels=["NW", "WD"])
          );

m_cpx = let
    form = @formula (1000/rt) ~ 1+F*P*Q*lQ*lT +
                               (1+F+P+Q+lQ+lT | subj) +
                               (1  +P+Q+lQ+lT | item);
    fit(MixedModel, form, dat; contrasts, progress)
end

VarCorr(m_cpx)
Column Variance Std.Dev Corr.
item (Intercept) 0.00320181 0.05658456
P: rel 0.00012913 0.01136337 +0.05
Q: clr 0.00015972 0.01263799 +0.36 +0.38
lQ: clr 0.00003493 0.00591002 +0.38 +0.03 +0.03
lT: WD 0.00015749 0.01254958 -0.11 -0.87 -0.01 -0.35
subj (Intercept) 0.03062115 0.17498899
F: HF 0.00003858 0.00621157 +0.39
P: rel 0.00012861 0.01134062 +0.35 +0.95
Q: clr 0.00078982 0.02810367 +0.41 +0.49 +0.72
lQ: clr 0.00011565 0.01075416 +0.06 +0.02 +0.22 +0.58
lT: WD 0.00104490 0.03232486 +0.26 -0.14 -0.01 +0.37 +0.50
Residual 0.08570468 0.29275361
issingular(m_cpx)
true
MixedModels.PCA(m_cpx)
(item = 
Principal components based on correlation matrix
 (Intercept)   1.0     .      .      .      .
 P: rel        0.05   1.0     .      .      .
 Q: clr        0.36   0.38   1.0     .      .
 lQ: clr       0.38   0.03   0.03   1.0     .
 lT: WD       -0.11  -0.87  -0.01  -0.35   1.0

Normalized cumulative variances:
[0.4227, 0.6868, 0.9061, 1.0, 1.0]

Component loadings
                PC1    PC2    PC3    PC4    PC5
 (Intercept)  -0.3    0.68   0.01   0.67   0.07
 P: rel       -0.6   -0.38   0.22   0.05   0.67
 Q: clr       -0.31   0.34   0.7   -0.46  -0.28
 lQ: clr      -0.32   0.41  -0.62  -0.55   0.2
 lT: WD        0.6    0.34   0.26  -0.15   0.66, subj = 
Principal components based on correlation matrix
 (Intercept)   1.0     .      .      .      .     .
 F: HF         0.39   1.0     .      .      .     .
 P: rel        0.35   0.95   1.0     .      .     .
 Q: clr        0.41   0.49   0.72   1.0     .     .
 lQ: clr       0.06   0.02   0.22   0.58   1.0    .
 lT: WD        0.26  -0.14  -0.01   0.37   0.5   1.0

Normalized cumulative variances:
[0.48, 0.7523, 0.8971, 0.9605, 1.0, 1.0]

Component loadings
                PC1    PC2    PC3    PC4    PC5    PC6
 (Intercept)  -0.34   0.01   0.83   0.41  -0.14  -0.09
 F: HF        -0.46   0.44  -0.07  -0.26  -0.39   0.61
 P: rel       -0.53   0.29  -0.2   -0.2   -0.02  -0.74
 Q: clr       -0.52  -0.18  -0.14   0.18   0.76   0.27
 lQ: clr      -0.29  -0.54  -0.42   0.45  -0.5   -0.0
 lT: WD       -0.19  -0.63   0.27  -0.7   -0.06   0.0)

Variance-covariance matrix of random-effect structure suggests overparameterization for both subject-related and item-related components.

We don’t look at fixed effects before model selection.

4.2 VCs and CPs

We can also look separately at item- and subj-related VCs and CPs for subjects and items.

first(m_cpx.λ)
5×5 LinearAlgebra.LowerTriangular{Float64, Matrix{Float64}}:
  0.193284      ⋅             ⋅            ⋅          ⋅ 
  0.00204529   0.0387616      ⋅            ⋅          ⋅ 
  0.0156009    0.0156464     0.0370864     ⋅          ⋅ 
  0.00758797   0.000204232  -0.00258088   0.0185273   ⋅ 
 -0.00482077  -0.0370884     0.0173333   -0.0117634  0.0

VP is zero for last diagonal entry; not supported by data.

last(m_cpx.λ)
6×6 LinearAlgebra.LowerTriangular{Float64, Matrix{Float64}}:
 0.597735      ⋅            ⋅           ⋅          ⋅          ⋅ 
 0.00818596   0.019575      ⋅           ⋅          ⋅          ⋅ 
 0.0134379    0.0343446    0.0118528    ⋅          ⋅          ⋅ 
 0.0392815    0.0347888    0.0803882   0.0         ⋅          ⋅ 
 0.00206606  -0.000103841  0.0242869   0.0108592  0.0252461   ⋅ 
 0.0283518   -0.0290294    0.0475194  -0.0533221  0.0552833  0.0488642

VP is zero for fourth diagonal entry; not supported by data.

5 Zero-correlation parameter LMM

5.1 Model fit

We take out correlation parameters.

m_zcp = let
    form = @formula (1000/rt) ~ 1+F*P*Q*lQ*lT +
                       zerocorr(1+F+P+Q+lQ+lT | subj) +
                       zerocorr(1  +P+Q+lQ+lT | item);
    fit(MixedModel, form, dat; contrasts, progress)
end

VarCorr(m_zcp)
issingular(m_zcp)
MixedModels.PCA(m_zcp)
(item = 
Principal components based on correlation matrix
 (Intercept)  1.0  .    .    .    .
 P: rel       0.0  1.0  .    .    .
 Q: clr       0.0  0.0  1.0  .    .
 lQ: clr      0.0  0.0  0.0  1.0  .
 lT: WD       0.0  0.0  0.0  0.0  1.0

Normalized cumulative variances:
[0.2, 0.4, 0.6, 0.8, 1.0]

Component loadings
               PC1   PC2   PC3   PC4   PC5
 (Intercept)  1.0   0.0   0.0   0.0   0.0
 P: rel       0.0   0.0   0.0   0.0   1.0
 Q: clr       0.0   1.0   0.0   0.0   0.0
 lQ: clr      0.0   0.0   1.0   0.0   0.0
 lT: WD       0.0   0.0   0.0   1.0   0.0, subj = 
Principal components based on correlation matrix
 (Intercept)  1.0  .    .    .    .    .
 F: HF        0.0  1.0  .    .    .    .
 P: rel       0.0  0.0  1.0  .    .    .
 Q: clr       0.0  0.0  0.0  1.0  .    .
 lQ: clr      0.0  0.0  0.0  0.0  1.0  .
 lT: WD       0.0  0.0  0.0  0.0  0.0  1.0

Normalized cumulative variances:
[0.1667, 0.3333, 0.5, 0.6667, 0.8333, 1.0]

Component loadings
               PC1   PC2   PC3   PC4   PC5   PC6
 (Intercept)  1.0   0.0   0.0   0.0   0.0   0.0
 F: HF        0.0   1.0   0.0   0.0   0.0   0.0
 P: rel       0.0   0.0   1.0   0.0   0.0   0.0
 Q: clr       0.0   0.0   0.0   1.0   0.0   0.0
 lQ: clr      0.0   0.0   0.0   0.0   1.0   0.0
 lT: WD       0.0   0.0   0.0   0.0   0.0   1.0)
MixedModels.likelihoodratiotest(m_zcp, m_cpx)
model-dof deviance χ² χ²-dof P(>χ²)
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + F + P + Q + lQ + lT | subj) + zerocorr(1 + P + Q + lQ + lT | item) 44 7188
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + (1 + F + P + Q + lQ + lT | subj) + (1 + P + Q + lQ + lT | item) 69 7148 41 25 0.0241

Looks ok. It might be a good idea to prune the LMM by removing small VCs.

m_zcp2 = let
    form = @formula (1000/rt) ~ 1+F*P*Q*lQ*lT +
                       zerocorr(1  +P+Q+lQ+lT | subj) +
                       zerocorr(1  +P+Q   +lT | item);
    fit(MixedModel, form, dat; contrasts, progress)
end
VarCorr(m_zcp2)
Column Variance Std.Dev Corr.
item (Intercept) 0.00320205 0.05658667
P: rel 0.00007137 0.00844788 .
Q: clr 0.00014719 0.01213239 . .
lT: WD 0.00011707 0.01081986 . . .
subj (Intercept) 0.03061184 0.17496240
P: rel 0.00009921 0.00996026 .
Q: clr 0.00077306 0.02780389 . .
lQ: clr 0.00011890 0.01090433 . . .
lT: WD 0.00106148 0.03258042 . . . .
Residual 0.08591586 0.29311407
MixedModels.likelihoodratiotest(m_zcp2, m_zcp, m_cpx)
model-dof deviance χ² χ²-dof P(>χ²)
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + P + Q + lQ + lT | subj) + zerocorr(1 + P + Q + lT | item) 42 7189
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + F + P + Q + lQ + lT | subj) + zerocorr(1 + P + Q + lQ + lT | item) 44 7188 0 2 0.9634
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + (1 + F + P + Q + lQ + lT | subj) + (1 + P + Q + lQ + lT | item) 69 7148 41 25 0.0241

We can perhaps remove some more.

m_zcp3 = let
    form = @formula (1000/rt) ~ 1+F*P*Q*lQ*lT +
                       zerocorr(1    +Q   +lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end
VarCorr(m_zcp3)
Column Variance Std.Dev Corr.
item (Intercept) 0.0032048 0.0566108
subj (Intercept) 0.0306166 0.1749760
Q: clr 0.0007628 0.0276190 .
lT: WD 0.0010644 0.0326259 . .
Residual 0.0864753 0.2940668
MixedModels.likelihoodratiotest(m_zcp3, m_zcp2, m_zcp, m_cpx)
model-dof deviance χ² χ²-dof P(>χ²)
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + Q + lT | subj) + (1 | item) 37 7196
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + P + Q + lQ + lT | subj) + zerocorr(1 + P + Q + lT | item) 42 7189 8 5 0.1781
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + F + P + Q + lQ + lT | subj) + zerocorr(1 + P + Q + lQ + lT | item) 44 7188 0 2 0.9634
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + (1 + F + P + Q + lQ + lT | subj) + (1 + P + Q + lQ + lT | item) 69 7148 41 25 0.0241

And another iteration.

m_zcp4 = let
    form = @formula (1000/rt) ~ 1+F*P*Q*lQ*lT +
                       zerocorr(1         +lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end
VarCorr(m_zcp4)
Column Variance Std.Dev Corr.
item (Intercept) 0.0032067 0.0566278
subj (Intercept) 0.0306608 0.1751023
lT: WD 0.0010896 0.0330097 .
Residual 0.0872330 0.2953523
MixedModels.likelihoodratiotest(m_zcp4, m_zcp3, m_zcp2, m_zcp, m_cpx)
model-dof deviance χ² χ²-dof P(>χ²)
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + lT | subj) + (1 | item) 36 7259
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + Q + lT | subj) + (1 | item) 37 7196 63 1 <1e-14
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + P + Q + lQ + lT | subj) + zerocorr(1 + P + Q + lT | item) 42 7189 8 5 0.1781
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + F + P + Q + lQ + lT | subj) + zerocorr(1 + P + Q + lQ + lT | item) 44 7188 0 2 0.9634
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + (1 + F + P + Q + lQ + lT | subj) + (1 + P + Q + lQ + lT | item) 69 7148 41 25 0.0241

Too much removed. Stay with m_zcp3, but extend with CPs.

m_prm = let
    form = @formula (1000/rt) ~ 1+F*P*Q*lQ*lT +
                               (1+    Q+lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end
VarCorr(m_prm)
Column Variance Std.Dev Corr.
item (Intercept) 0.0032009 0.0565764
subj (Intercept) 0.0306183 0.1749808
Q: clr 0.0007627 0.0276168 +0.42
lT: WD 0.0010621 0.0325904 +0.26 +0.38
Residual 0.0864769 0.2940696

5.1.1 post-hoc LMM

m_prm = let
    form = @formula (1000/rt) ~ 1+F*P*Q*lQ*lT +
                               (1+    Q+lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end
VarCorr(m_prm)
Column Variance Std.Dev Corr.
item (Intercept) 0.0032009 0.0565764
subj (Intercept) 0.0306183 0.1749808
Q: clr 0.0007627 0.0276168 +0.42
lT: WD 0.0010621 0.0325904 +0.26 +0.38
Residual 0.0864769 0.2940696

5.2 VCs and CPs

MixedModels.likelihoodratiotest(m_zcp3, m_prm, m_cpx)
model-dof deviance χ² χ²-dof P(>χ²)
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + zerocorr(1 + Q + lT | subj) + (1 | item) 37 7196
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + (1 + Q + lT | subj) + (1 | item) 40 7180 16 3 0.0011
:(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + (1 + F + P + Q + lQ + lT | subj) + (1 + P + Q + lQ + lT | item) 69 7148 33 29 0.2971

The LRT favors the complex LMM, but not that χ² < 2*(χ²-dof); AIC and BIC suggest against selection.

gof_summary = let
  nms = [:m_zcp3, :m_prm, :m_cpx]
  mods = eval.(nms)
  lrt = MixedModels.likelihoodratiotest(m_zcp3, m_prm, m_cpx)
  DataFrame(;
    name = nms,
    dof=dof.(mods),
    deviance=round.(deviance.(mods), digits=0),
    AIC=round.(aic.(mods),digits=0),
    AICc=round.(aicc.(mods),digits=0),
    BIC=round.(bic.(mods),digits=0),
    χ²=vcat(:., round.(lrt.tests.deviancediff, digits=0)),
    χ²_dof=vcat(:., round.(lrt.tests.dofdiff, digits=0)),
    pvalue=vcat(:., round.(lrt.tests.pvalues, digits=3))
  )
end
3×9 DataFrame
Row name dof deviance AIC AICc BIC χ² χ²_dof pvalue
Symbol Int64 Float64 Float64 Float64 Float64 Any Any Any
1 m_zcp3 37 7196.0 7270.0 7270.0 7555.0 . . .
2 m_prm 40 7180.0 7260.0 7260.0 7568.0 16.0 3.0 0.001
3 m_cpx 69 7148.0 7286.0 7286.0 7817.0 33.0 29.0 0.297

6 Parsimonious LMM - replication of MRK17 LMM

The LMM is not nested in the previous sequence.

6.1 Crossed fixed effects

m_mrk17_crossed =let
   form = @formula (1000/rt) ~ 1 + F*P*Q*lQ*lT +
        (1+Q | subj) + zerocorr(0+lT | subj) + zerocorr(1 + P | item) ;
    fit(MixedModel, form, dat; contrasts, progress)
end

VarCorr(m_prm)
Column Variance Std.Dev Corr.
item (Intercept) 0.0032009 0.0565764
subj (Intercept) 0.0306183 0.1749808
Q: clr 0.0007627 0.0276168 +0.42
lT: WD 0.0010621 0.0325904 +0.26 +0.38
Residual 0.0864769 0.2940696
show(m_mrk17_crossed)
Linear mixed model fit by maximum likelihood
 :(1000 / rt) ~ 1 + F + P + Q + lQ + lT + F & P + F & Q + P & Q + F & lQ + P & lQ + Q & lQ + F & lT + P & lT + Q & lT + lQ & lT + F & P & Q + F & P & lQ + F & Q & lQ + P & Q & lQ + F & P & lT + F & Q & lT + P & Q & lT + F & lQ & lT + P & lQ & lT + Q & lQ & lT + F & P & Q & lQ + F & P & Q & lT + F & P & lQ & lT + F & Q & lQ & lT + P & Q & lQ & lT + F & P & Q & lQ & lT + (1 + Q | subj) + zerocorr(0 + lT | subj) + zerocorr(1 + P | item)
   logLik   -2 logLik     AIC       AICc        BIC    
 -3593.4086  7186.8171  7264.8171  7265.0077  7565.3349

Variance components:
            Column    Variance   Std.Dev.    Corr.
item     (Intercept)  0.00320568 0.05661869
         P: rel       0.00006693 0.00818097   .  
subj     (Intercept)  0.03061760 0.17497884
         Q: clr       0.00076248 0.02761309 +0.42
         lT: WD       0.00106209 0.03258968   .     .  
Residual              0.08640800 0.29395238
 Number of obs: 16409; levels of grouping factors: 240, 73

  Fixed-effects parameters:
─────────────────────────────────────────────────────────────────────────────────────
                                                   Coef.  Std. Error      z  Pr(>|z|)
─────────────────────────────────────────────────────────────────────────────────────
(Intercept)                                  1.63743      0.0209304   78.23    <1e-99
F: HF                                        0.019366     0.00431955   4.48    <1e-05
P: rel                                       0.0188081    0.00236113   7.97    <1e-14
Q: clr                                       0.042901     0.00396828  10.81    <1e-26
lQ: clr                                      0.00174653   0.00231531   0.75    0.4506
lT: WD                                       0.00836023   0.00446182   1.87    0.0610
F: HF & P: rel                              -0.00711249   0.00236171  -3.01    0.0026
F: HF & Q: clr                              -0.00141259   0.00230067  -0.61    0.5392
P: rel & Q: clr                              0.00134142   0.00230239   0.58    0.5601
F: HF & lQ: clr                             -0.00105227   0.00232139  -0.45    0.6503
P: rel & lQ: clr                            -0.00240743   0.00232056  -1.04    0.2995
Q: clr & lQ: clr                             0.00759804   0.00231922   3.28    0.0011
F: HF & lT: WD                               0.000536555  0.00231365   0.23    0.8166
P: rel & lT: WD                              2.93223e-5   0.00231751   0.01    0.9899
Q: clr & lT: WD                              0.00185532   0.00231773   0.80    0.4234
lQ: clr & lT: WD                            -0.00524632   0.00231608  -2.27    0.0235
F: HF & P: rel & Q: clr                     -0.000362238  0.00230272  -0.16    0.8750
F: HF & P: rel & lQ: clr                    -0.00117754   0.00232025  -0.51    0.6118
F: HF & Q: clr & lQ: clr                     0.00273699   0.00232283   1.18    0.2387
P: rel & Q: clr & lQ: clr                   -0.0039323    0.0023222   -1.69    0.0904
F: HF & P: rel & lT: WD                      0.0019864    0.00231879   0.86    0.3916
F: HF & Q: clr & lT: WD                     -0.00112586   0.00231657  -0.49    0.6270
P: rel & Q: clr & lT: WD                     0.000261827  0.00231924   0.11    0.9101
F: HF & lQ: clr & lT: WD                     0.00150677   0.00232198   0.65    0.5164
P: rel & lQ: clr & lT: WD                    8.67964e-5   0.00232177   0.04    0.9702
Q: clr & lQ: clr & lT: WD                    0.00916751   0.00231827   3.95    <1e-04
F: HF & P: rel & Q: clr & lQ: clr           -0.00234443   0.00231978  -1.01    0.3122
F: HF & P: rel & Q: clr & lT: WD            -0.00148721   0.00232057  -0.64    0.5216
F: HF & P: rel & lQ: clr & lT: WD            0.00308764   0.00232145   1.33    0.1835
F: HF & Q: clr & lQ: clr & lT: WD            0.00393598   0.00232128   1.70    0.0900
P: rel & Q: clr & lQ: clr & lT: WD           0.00202623   0.00232125   0.87    0.3827
F: HF & P: rel & Q: clr & lQ: clr & lT: WD   0.00144888   0.00231838   0.62    0.5320
─────────────────────────────────────────────────────────────────────────────────────

Finally, a look at the fixed effects. The four-factor interaction reported in Masson & Kliegl (2013) was not replicated.

6.2 Nested fixed effects

m_mrk17_nested =let
   form = @formula (1000/rt) ~ 1 + Q/(F/P) +
        (1+Q | subj) + zerocorr(0+lT | subj) + zerocorr(1 + P | item) ;
    fit(MixedModel, form, dat; contrasts, progress)
end
Est. SE z p σ_item σ_subj
(Intercept) 1.6374 0.0209 78.20 <1e-99 0.0565 0.1751
Q: clr 0.0428 0.0040 10.74 <1e-26 0.0278
Q: deg & F: HF 0.0209 0.0049 4.26 <1e-04
Q: clr & F: HF 0.0179 0.0049 3.65 0.0003
Q: deg & F: LF & P: rel 0.0244 0.0047 5.18 <1e-06
Q: clr & F: LF & P: rel 0.0278 0.0047 5.94 <1e-08
Q: deg & F: HF & P: rel 0.0110 0.0047 2.35 0.0186
Q: clr & F: HF & P: rel 0.0126 0.0046 2.71 0.0067
P: rel 0.0086
lT: WD 0.0337
Residual 0.2944

7 Questions from the Discussion forum

7.1 Nesting within products of factors

Include parenthesis

m_mrk17_nested =let
   form = @formula (1000/rt) ~ 1 + Q/(F/P) +
        (1+Q | subj) + zerocorr(0+lT | subj) + zerocorr(1 + P | item) ;
    fit(MixedModel, form, dat; contrasts, progress)
end
Est. SE z p σ_item σ_subj
(Intercept) 1.6374 0.0209 78.20 <1e-99 0.0565 0.1751
Q: clr 0.0428 0.0040 10.74 <1e-26 0.0278
Q: deg & F: HF 0.0209 0.0049 4.26 <1e-04
Q: clr & F: HF 0.0179 0.0049 3.65 0.0003
Q: deg & F: LF & P: rel 0.0244 0.0047 5.18 <1e-06
Q: clr & F: LF & P: rel 0.0278 0.0047 5.94 <1e-08
Q: deg & F: HF & P: rel 0.0110 0.0047 2.35 0.0186
Q: clr & F: HF & P: rel 0.0126 0.0046 2.71 0.0067
P: rel 0.0086
lT: WD 0.0337
Residual 0.2944

7.2 Selection in fixed effects

using RegressionFormulae
# m_prm_5 is equivalent to m_prm
m_prm_5 = let
    form = @formula (1000/rt) ~ 1+(F+P+Q+lQ+lT)^5 + (1+Q+lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end;

m_prm_4 = let
    form = @formula (1000/rt) ~ 1+(F+P+Q+lQ+lT)^4 + (1+Q+lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end;

m_prm_3 = let
    form = @formula (1000/rt) ~ 1+(F+P+Q+lQ+lT)^3 + (1+Q+lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end;

m_prm_2 = let
    form = @formula (1000/rt) ~ 1+(F+P+Q+lQ+lT)^2 + (1+Q+lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end;

m_prm_1 = let
    form = @formula (1000/rt) ~ 1+ F+P+Q+lQ+lT +   (1+Q+lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end;

# Compare the fits
gof_summary = let
  nms = [:m_prm_1, :m_prm_2, :m_prm_3, :m_prm_4, :m_prm_5]
  mods = eval.(nms)
  lrt = MixedModels.likelihoodratiotest(m_prm_1, m_prm_2, m_prm_3, m_prm_4, m_prm_5)
  DataFrame(;
    name = nms,
    dof=dof.(mods),
    deviance=deviance.(mods),
    AIC=aic.(mods),
    AICc=aicc.(mods),
    BIC=bic.(mods),
    χ²=vcat(:.,lrt.tests.deviancediff),
    χ²_dof=vcat(:.,lrt.tests.dofdiff),
    pvalue=vcat(:., round.(lrt.tests.pvalues, digits=3))
  )
end
5×9 DataFrame
Row name dof deviance AIC AICc BIC χ² χ²_dof pvalue
Symbol Int64 Float64 Float64 Float64 Float64 Any Any Any
1 m_prm_1 14 7237.39 7265.39 7265.41 7373.27 . . .
2 m_prm_2 24 7209.2 7257.2 7257.27 7442.13 28.1868 10 0.002
3 m_prm_3 34 7187.57 7255.57 7255.71 7517.56 21.6317 10 0.017
4 m_prm_4 39 7180.61 7258.61 7258.8 7559.13 6.95863 5 0.224
5 m_prm_5 40 7180.21 7260.21 7260.41 7568.44 0.398591 1 0.528

Depending on the level of precision of your hypothesis. You could stay with main effect (BIC), include 2-factor interactions (AIC; also called simple interactions) or include 3-factor interactions [χ² < 2*(χ²-dof); also called 2-way interactions].

7.3 Posthoc LMM

We are using only three factors for the illustruation.

m_prm3 = let
    form = @formula (1000/rt) ~ 1 + lT*lQ*Q +
                               (1+    Q+lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end
Est. SE z p σ_item σ_subj
(Intercept) 1.6376 0.0210 78.10 <1e-99 0.0596 0.1750
lT: WD 0.0087 0.0045 1.93 0.0530 0.0328
lQ: clr 0.0016 0.0023 0.70 0.4818
Q: clr 0.0428 0.0040 10.78 <1e-26 0.0276
lT: WD & lQ: clr -0.0056 0.0023 -2.39 0.0167
lT: WD & Q: clr 0.0020 0.0023 0.87 0.3862
lQ: clr & Q: clr 0.0076 0.0023 3.26 0.0011
lT: WD & lQ: clr & Q: clr 0.0092 0.0023 3.94 <1e-04
Residual 0.2949

The lT & lQ & Q interactions is significant. Let’s follow it up with a post-hoc LMM, that is looking at the lQ & Q interaction in the two levels of whether the last word was a target or not.

m_prm3_posthoc = let
    form = @formula (1000/rt) ~ 1 + lT/(lQ*Q) +
                               (1+    Q+lT | subj) + (1 | item);
    fit(MixedModel, form, dat; contrasts, progress)
end
Est. SE z p σ_item σ_subj
(Intercept) 1.6376 0.0210 78.10 <1e-99 0.0596 0.1750
lT: WD 0.0087 0.0045 1.93 0.0530 0.0328
lT: NW & lQ: clr 0.0072 0.0033 2.19 0.0285
lT: WD & lQ: clr -0.0039 0.0033 -1.19 0.2326
lT: NW & Q: clr 0.0408 0.0046 8.87 <1e-18
lT: WD & Q: clr 0.0448 0.0046 9.73 <1e-21
lT: NW & lQ: clr & Q: clr -0.0016 0.0033 -0.49 0.6275
lT: WD & lQ: clr & Q: clr 0.0167 0.0033 5.08 <1e-06
Q: clr 0.0276
Residual 0.2949

The source of the interaction are trials where the last trial was a word target; there is no evidence for the interaction when the last trial was a nonword target.

The original and post-hoc LMM have the same goodness of fit.

[objective(m_prm3), objective(m_prm3_posthoc)]
2-element Vector{Float64}:
 7291.14543744855
 7291.145437718473

7.4 Info

versioninfo()
Julia Version 1.10.5
Commit 6f3fdf7b362 (2024-08-27 14:19 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 8 × 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, tigerlake)
Threads: 8 default, 0 interactive, 4 GC (on 8 virtual cores)
Environment:
  JULIA_LOAD_PATH = @:@stdlib
Back to top